# OLLI SG 492 Plate Tectonics Session 4 - October 10, 2022

# **Today's Meeting**

- Finish the history of, and evidence for, the theory of plate tectonics.
- Plate movement.
- Types of plate boundaries, and their characteristics.
- The creation of the oceans.
- The rock cycle.

## Why Is the Earth Still Hot? **4.5 Billion Years of Cooling**

- Heat remains from the conditions that formed early Earth:
  - Kinetic energy of the collisions of meteorites, asteroids, etc. was transformed into thermal energy.
  - In addition, radiogenic heat resulted from the decay of short-lived radioactive isotopes, such as aluminum-26 and calcium-41.
- Heat continues to be produced from the decay of long-lived radioactive isotopes, such as uranium-235, uranium-238, thorium-232, and potassium-40.
- Heat from the latter slows the heat loss due to radiation into space.

## **Movement of Crustal Plates** How Can It Happen?

- The crust, the lithospheric mantle (together, they form the lithosphere), and the asthenosphere have different densities and composition, ranging in density from 2.7 gm/c<sup>3</sup> for continental crust to 3.3 gm/c<sup>3</sup> for the asthenosphere.
- Rocks in the asthenosphere are at temperatures and pressures near their melting point. They respond to forces by **flowing**.
- Rocks in the lithosphere are relatively cool and rigid. They respond to forces by **bending or breaking**, not flowing.
- The lithosphere is effectively detached from the asthenosphere, allowing it to move independently.

### **Movement of Crustal Plates** How Does It Happen?

- Convection in the upper mantle transports heat from the core to the crust through hot, rising mantle rocks in plume shaped structures.
- When the plumes reach the asthenosphere, they slide horizontally under the lithosphere. This results in the opening of a mid-ocean ridge or rift and "ridge push."
- The magma entering the rift creates a ridge several thousand feet above the seafloor. As the ridge cools, it slumps away from the rift through gravity, adding to "ridge push."
- A corresponding movement of cold oceanic crust being subducted back into the mantle results in "slab pull."

#### Movement of Crustal Plates

**Mantle Plumes** 



oceanic plate

### **Movement of Crustal Plates**

### Ridge Push, **Slab Pull**

Friction between the overriding plate and the subducting plate resists plate motion.

**Ridge** push is a gravity driven force that results from the elevated position of the ridge.

Mantle drag resists plate subduction.

500

Slab pull results from the sinking of a cold, dense slab of oceanic lithosphere and is the major driving force of plate motion.

Trench

**Convection** in the mantle enhances plate motion when the velocity of the asthenosphere exceeds that of the overlying plate.

dge



# **Plate Boundaries**

- former boundaries!
  - Volcanos, earthquakes, mountain building, etc.
- Three types of boundaries:
  - Divergent boundaries continental or oceanic crust is rifting, separating.
  - Convergent boundaries plates are colliding:
    - Continental to continental collision.
    - Oceanic to oceanic collision.
    - Contiental to oceanic collision.
  - Transform Boundaries plates are sliding past each other.

Geologically speaking, it's (mostly) happening at plate boundaries - both current and

### Divergent Boundary **Seafloor Spreading**

plate boundaries seafloor spreading.



### **Divergent Boundary** Continental Rifting



JRE 13.21 East African Rift Valley

#### Convergent Boundary

**Continental to Continental** Crust



C. Continental collisions occur along convergent plate boundaries when both plates are capped with continental crust.



#### Convergent Boundary

Oceanic to **Oceanic Crust** 



#### Convergent Boundary

**Continntal to Oceanic** Crust



A. Convergent plate boundary where oceanic lithosphere is subducting beneath continental lithosphere.

#### Continental volcanic arc.



-Trench



#### **Transform Plate Boundaries**





## **Creation of the Oceans**

- Video clip 1 from 2:38 to 3:00.
- Video clip 2 from 7:18 to 9:22
- Video clip 3 from 9:54 to 11:01
- Video clip 4 from 12:47 to 13:02
- Video clip 5 from 25:48 to 28:40

# **Rock Cycle**



# **Up Next**

- Formation of the continents.
- The supercontinent cycle.